Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(18): 5122-5138, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37386726

RESUMO

The biosphere is changing rapidly due to human endeavour. Because ecological communities underlie networks of interacting species, changes that directly affect some species can have indirect effects on others. Accurate tools to predict these direct and indirect effects are therefore required to guide conservation strategies. However, most extinction-risk studies only consider the direct effects of global change-such as predicting which species will breach their thermal limits under different warming scenarios-with predictions of trophic cascades and co-extinction risks remaining mostly speculative. To predict the potential indirect effects of primary extinctions, data describing community interactions and network modelling can estimate how extinctions cascade through communities. While theoretical studies have demonstrated the usefulness of models in predicting how communities react to threats like climate change, few have applied such methods to real-world communities. This gap partly reflects challenges in constructing trophic network models of real-world food webs, highlighting the need to develop approaches for quantifying co-extinction risk more accurately. We propose a framework for constructing ecological network models representing real-world food webs in terrestrial ecosystems and subjecting these models to co-extinction scenarios triggered by probable future environmental perturbations. Adopting our framework will improve estimates of how environmental perturbations affect whole ecological communities. Identifying species at risk of co-extinction (or those that might trigger co-extinctions) will also guide conservation interventions aiming to reduce the probability of co-extinction cascades and additional species losses.


Assuntos
Ecossistema , Extinção Biológica , Humanos , Cadeia Alimentar , Modelos Teóricos , Mudança Climática , Biodiversidade
2.
Glob Chang Biol ; 29(8): 2132-2140, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36654193

RESUMO

Climate-driven biodiversity erosion is escalating at an alarming rate. The pressure imposed by climate change is exceptionally high in tropical ecosystems, where species adapted to narrow environmental ranges exhibit strong physiological constraints. Despite the observed detrimental effect of climate change on ecosystems at a global scale, our understanding of the extent to which multiple climatic drivers affect population dynamics is limited. Here, we disentangle the impact of different climatic stressors on 47 rainforest birds inhabiting the mountains of the Australian Wet Tropics using hierarchical population models. We estimate the effect of spatiotemporal changes in temperature, precipitation, heatwaves, droughts and cyclones on the population dynamics of rainforest birds between 2000 and 2016. We find a strong effect of warming and changes in rainfall patterns across the elevational-segregated bird communities, with lowland populations benefiting from increasing temperature and precipitation, while upland species show an inverse strong negative response to the same drivers. Additionally, we find a negative effect of heatwaves on lowland populations, a pattern associated with the observed distribution of these extreme events across elevations. In contrast, cyclones and droughts have a marginal effect on spatiotemporal changes in rainforest bird communities, suggesting a species-specific response unrelated to the elevational gradient. This study demonstrated the importance of unravelling the drivers of climate change impacts on population changes, providing significant insight into the mechanisms accelerating climate-induced biodiversity degradation.


Assuntos
Ecossistema , Floresta Úmida , Animais , Austrália , Aves/fisiologia , Biodiversidade , Mudança Climática
3.
Ecol Evol ; 12(7): e9105, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35845357

RESUMO

Invasive mesopredators are responsible for the decline of many species of native mammals worldwide. Feral cats have been causally linked to multiple extinctions of Australian mammals since European colonization. While feral cats are found throughout Australia, most research has been undertaken in arid habitats, thus there is a limited understanding of feral cat distribution, abundance, and ecology in Australian tropical rainforests. We carried out camera-trapping surveys at 108 locations across seven study sites, spanning 200 km in the Australian Wet Tropics. Single-species occupancy analysis was implemented to investigate how environmental factors influence feral cat distribution. Feral cats were detected at a rate of 5.09 photographs/100 days, 11 times higher than previously recorded in the Australian Wet Tropics. The main environmental factors influencing feral cat occupancy were a positive association with terrain ruggedness, a negative association with elevation, and a higher affinity for rainforest than eucalypt forest. These findings were consistent with other studies on feral cat ecology but differed from similar surveys in Australia. Increasingly harsh and consistently wet weather conditions at higher elevations, and improved shelter in topographically complex habitats may drive cat preference for lowland rainforest. Feral cats were positively associated with roads, supporting the theory that roads facilitate access and colonization of feral cats within more remote parts of the rainforest. Higher elevation rainforests with no roads could act as refugia for native prey species within the critical weight range. Regular monitoring of existing roads should be implemented to monitor feral cats, and new linear infrastructure should be limited to prevent encroachment into these areas. This is pertinent as climate change modeling suggests that habitats at higher elevations will become similar to lower elevations, potentially making the environment more suitable for feral cat populations.

4.
Ecology ; 103(1): e03549, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618920

RESUMO

Determining how species thermal limits correlate with climate is important for understanding biogeographic patterns and assessing vulnerability to climate change. Such analyses need to consider thermal gradients at multiple spatial scales. Here we relate thermal traits of rainforest ants to microclimate conditions from ground to canopy (microgeographic scale) along an elevation gradient (mesogeographic scale) and calculate warming tolerance to assess climate change vulnerability in the Australian Wet Tropics Bioregion. We test the thermal adaptation and thermal niche asymmetry hypotheses to explain interspecific patterns of thermal tolerance at these two spatial scales. We tested cold tolerance (CTmin ), heat tolerance (CTmax ), and calculated thermal tolerance range (CTrange ), using ramping assays for 74 colonies of 40 ant species collected from terrestrial and arboreal habitats at lowland and upland elevation sites and recorded microclimatic conditions for one year. Within sites, arboreal ants were exposed to hotter microclimates and on average had a 4.2°C (95% CI: 2.7-5.6°C) higher CTmax and 5.3°C (95% CI: 3.5-7°C) broader CTrange than ground-dwelling ants. This pattern was consistent across the elevation gradient, whether it be the hotter lowlands or the cooler uplands. Across elevation, upland ants could tolerate significantly colder temperatures than lowland ants, whereas the change in CTmax was less pronounced, and CTrange did not change over elevation. Differential exposure to microclimates, due to localized niche preferences, drives divergence in CTmax , while environmental temperatures along the elevation gradient drive divergence in CTmin . Our results suggest that both processes of thermal adaptation and thermal niche asymmetry are at play, depending on the spatial scale of observation, and we discuss potential mechanisms underlying these patterns. Despite the broad thermal tolerance range of arboreal rainforest ants, lowland arboreal ants had the lowest warming tolerance and may be most vulnerable to climate change.


Assuntos
Formigas , Termotolerância , Animais , Austrália , Floresta Úmida , Temperatura , Árvores
5.
PLoS One ; 16(12): e0254307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34937065

RESUMO

Many authors have suggested that the vulnerability of montane biodiversity to climate change worldwide is significantly higher than in most other ecosystems. Despite the extensive variety of studies predicting severe impacts of climate change globally, few studies have empirically validated the predicted changes in distribution and population density. Here, we used 17 years (2000-2016) of standardised bird monitoring across latitudinal/elevational gradients in the rainforest of the Australian Wet Tropics World Heritage Area to assess changes in local abundance and elevational distribution. We used relative abundance in 1977 surveys across 114 sites ranging from 0-1500m above sea level and utilised a trend analysis approach (TRIM) to investigate elevational shifts in abundance of 42 species. The local abundance of most mid and high elevation species has declined at the lower edges of their distribution by >40% while lowland species increased by up to 190% into higher elevation areas. Upland-specialised species and regional endemics have undergone dramatic population declines of almost 50%. The "Outstanding Universal Value" of the Australian Wet Tropics World Heritage Area, one of the most irreplaceable biodiversity hotspots on Earth, is rapidly degrading. These observed impacts are likely to be similar in many tropical montane ecosystems globally.


Assuntos
Aves/crescimento & desenvolvimento , Animais , Austrália , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Modelos Biológicos , Densidade Demográfica , Floresta Úmida , Clima Tropical
6.
Glob Chang Biol ; 26(2): 410-416, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31746093

RESUMO

Climate change poses significant emerging risks to biodiversity, ecosystem function and associated socioecological systems. Adaptation responses must be initiated in parallel with mitigation efforts, but resources are limited. As climate risks are not distributed equally across taxa, ecosystems and processes, strategic prioritization of research that addresses stakeholder-relevant knowledge gaps will accelerate effective uptake into adaptation policy and management action. After a decade of climate change adaptation research within the Australian National Climate Change Adaptation Research Facility, we synthesize the National Adaptation Research Plans for marine, terrestrial and freshwater ecosystems. We identify the key, globally relevant priorities for ongoing research relevant to informing adaptation policy and environmental management aimed at maximizing the resilience of natural ecosystems to climate change. Informed by both global literature and an extensive stakeholder consultation across all ecosystems, sectors and regions in Australia, involving thousands of participants, we suggest 18 priority research topics based on their significance, urgency, technical and economic feasibility, existing knowledge gaps and potential for cobenefits across multiple sectors. These research priorities provide a unified guide for policymakers, funding organizations and researchers to strategically direct resources, maximize stakeholder uptake of resulting knowledge and minimize the impacts of climate change on natural ecosystems. Given the pace of climate change, it is imperative that we inform and accelerate adaptation progress in all regions around the world.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Austrália , Biodiversidade , Mudança Climática
7.
Conserv Biol ; 32(5): 1162-1173, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30055016

RESUMO

To augment mammal conservation in the Eastern Himalayan region, we assessed the resident 255 terrestrial mammal species and identified the 50 most threatened species based on conservation status, endemism, range size, and evolutionary distinctiveness. By using the spatial analysis package letsR and the complementarity core-area method in the conservation planning software Zonation, we assessed the current efficacy of their protection and identified priority conservation areas by comparing protected areas (PAs), land cover, and global ecoregion 2017 maps at a 100 × 100 m spatial scale. The 50 species that were most threatened, geographically restricted, and evolutionarily distinct faced a greater extinction risk than globally nonthreatened and wide-ranging species and species with several close relatives. Small, medium-sized, and data-deficient species faced extinction from inadequate protection in PAs relative to wide-ranging charismatic species. There was a mismatch between current PA distribution and priority areas for conservation of the 50 most endangered species. To protect these species, the skewed regional PA distribution would require expansion. Where possible, new PAs and transboundary reserves in the 35 priority areas we identified should be established. There are adequate remaining natural areas in which to expand current Eastern Himalayan PAs. Consolidation and expansion of PAs in the EH requires strengthening national and regional transboundary collaboration, formulating comprehensive regional land-use plans, diversifying conservation funding, and enhancing information sharing through a consolidated regional database.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Espécies em Perigo de Extinção , Mamíferos , Análise Espacial
8.
Science ; 355(6332)2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28360268

RESUMO

Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals.


Assuntos
Biodiversidade , Mudança Climática , Animais , Abastecimento de Alimentos , Saúde , Humanos
9.
Ecol Evol ; 6(22): 8062-8074, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27878078

RESUMO

Morphology mediates the relationship between an organism's body temperature and its environment. Dark organisms, for example, tend to absorb heat more quickly than lighter individuals, which could influence their responses to temperature. Therefore, temperature-related traits such as morphology may affect patterns of species abundance, richness, and community assembly across a broad range of spatial scales. In this study, we examined variation in color lightness and body size within butterfly communities across hot and cool habitats in the tropical woodland-rainforest ecosystems of northeast Queensland, Australia. Using thermal imaging, we documented the absorption of solar radiation relative to color lightness and wingspan and then built a phylogenetic tree based on available sequences to analyze the effects of habitat on these traits within a phylogenetic framework. In general, darker and larger individuals were more prevalent in cool, closed-canopy rainforests than in immediately adjacent and hotter open woodlands. In addition, darker and larger butterflies preferred to be active in the shade and during crepuscular hours, while lighter and smaller butterflies were more active in the sun and midday hours-a pattern that held after correcting for phylogeny. Our ex situ experiment supported field observations that dark and large butterflies heated up faster than light and small butterflies under standardized environmental conditions. Our results show a thermal consequence of butterfly morphology across habitats and how environmental factors at a microhabitat scale may affect the distribution of species based on these traits. Furthermore, this study highlights how butterfly species might differentially respond to warming based on ecophysiological traits and how thermal refuges might emerge at microclimatic and habitat scales.

10.
Biol Lett ; 12(10)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27729484

RESUMO

The effect of twenty-first-century climate change on biodiversity is commonly forecast based on modelled shifts in species ranges, linked to habitat suitability. These projections have been coupled with species-area relationships (SAR) to infer extinction rates indirectly as a result of the loss of climatically suitable areas and associated habitat. This approach does not model population dynamics explicitly, and so accepts that extinctions might occur after substantial (but unknown) delays-an extinction debt. Here we explicitly couple bioclimatic envelope models of climate and habitat suitability with generic life-history models for 24 species of frogs found in the Australian Wet Tropics (AWT). We show that (i) as many as four species of frogs face imminent extinction by 2080, due primarily to climate change; (ii) three frogs face delayed extinctions; and (iii) this extinction debt will take at least a century to be realized in full. Furthermore, we find congruence between forecast rates of extinction using SARs, and demographic models with an extinction lag of 120 years. We conclude that SAR approaches can provide useful advice to conservation on climate change impacts, provided there is a good understanding of the time lags over which delayed extinctions are likely to occur.


Assuntos
Anuros , Mudança Climática , Extinção Biológica , Animais , Austrália , Biodiversidade , Ecossistema , Modelos Biológicos , Dinâmica Populacional , Fatores de Tempo
11.
Evolution ; 70(11): 2537-2549, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27612295

RESUMO

There is pressing urgency to understand how tropical ectotherms can behaviorally and physiologically respond to climate warming. We examine how basking behavior and thermal environment interact to influence evolutionary variation in thermal physiology of multiple species of lygosomine rainforest skinks from the Wet Tropics of northeastern Queensland, Australia (AWT). These tropical lizards are behaviorally specialized to exploit canopy or sun, and are distributed across marked thermal clines in the AWT. Using phylogenetic analyses, we demonstrate that physiological parameters are either associated with changes in local thermal habitat or to basking behavior, but not both. Cold tolerance, the optimal sprint speed, and performance breadth are primarily influenced by local thermal environment. Specifically, montane lizards are more cool tolerant, have broader performance breadths, and higher optimum sprinting temperatures than their lowland counterparts. Heat tolerance, in contrast, is strongly affected by basking behavior: there are two evolutionary optima, with basking species having considerably higher heat tolerance than shade skinks, with no effect of elevation. These distinct responses among traits indicate the multiple selective pressures and constraints that shape the evolution of thermal performance. We discuss how behavior and physiology interact to shape organisms' vulnerability and potential resilience to climate change.


Assuntos
Aclimatação , Evolução Molecular , Temperatura Alta , Lagartos/genética , Resposta Táctica , Animais , Austrália , Lagartos/fisiologia , Locomoção , Floresta Úmida
12.
PLoS One ; 11(5): e0155826, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27192085

RESUMO

Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of relatively distinct assemblages containing a high level of regional endemic species. Species richness was most strongly and positively associated with historical and current climatic stabilities and negatively associated with severity of recent disturbance (treefalls). Assemblage composition was associated with latitude and historical and current climatic conditions. Although the results need to be interpreted carefully due to inter-correlation between historical and current climatic variables, our study is in agreement with the hypothesis that upland refugia provided stable climatic conditions since the last glacial maximum, and supported a diverse fauna of flightless beetle species. These findings are important for conservation management as upland habitats become increasingly threatened by climate change.


Assuntos
Altitude , Distribuição Animal , Besouros/fisiologia , Floresta Úmida , Animais , Austrália
13.
Proc Biol Sci ; 283(1828)2016 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-27053754

RESUMO

There is broad consensus that the diversity of functional traits within species assemblages drives several ecological processes. It is also widely recognized that rare species are the first to become extinct following human-induced disturbances. Surprisingly, however, the functional importance of rare species is still poorly understood, particularly in tropical species-rich assemblages where the majority of species are rare, and the rate of species extinction can be high. Here, we investigated the consequences of local and regional extinctions on the functional structure of species assemblages. We used three extensive datasets (stream fish from the Brazilian Amazon, rainforest trees from French Guiana, and birds from the Australian Wet Tropics) and built an integrative measure of species rarity versus commonness, combining local abundance, geographical range, and habitat breadth. Using different scenarios of species loss, we found a disproportionate impact of rare species extinction for the three groups, with significant reductions in levels of functional richness, specialization, and originality of assemblages, which may severely undermine the integrity of ecological processes. The whole breadth of functional abilities within species assemblages, which is disproportionately supported by rare species, is certainly critical in maintaining ecosystems particularly under the ongoing rapid environmental transitions.


Assuntos
Biodiversidade , Aves/fisiologia , Conservação dos Recursos Naturais , Extinção Biológica , Peixes/fisiologia , Árvores/fisiologia , Animais , Brasil , Guiana Francesa , Densidade Demográfica , Queensland , Floresta Úmida
14.
Fungal Biol ; 120(5): 807-17, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27109376

RESUMO

As the only endemic member in New Zealand of the ancient conifer family, Araucariaceae, Agathis australis is an ideal species to study putatively long-evolved mycorrhizal symbioses. However, little is known about A. australis root and nodular arbuscular mycorrhizal fungi (AMF), and how mycorrhizal colonisation occurs. We used light, scanning and transmission electron microscopy to characterise colonisation, and 454-sequencing to identify the AMF associated with A. australis roots and nodules. We interpreted the results in terms of the edaphic characteristics of the A. australis-influenced ecosystem. Representatives of five families of Glomeromycota were identified via high-throughput pyrosequencing. Imaging studies showed that there is abundant, but not ubiquitous, colonisation of nodules, which suggests that nodules are mostly colonised by horizontal transmission. Roots were also found to harbour AMF. This study is the first to demonstrate the multiple Glomeromycota lineages associated with A. australis including some that may not have been previously detected.


Assuntos
Micorrizas/classificação , Micorrizas/isolamento & purificação , Raízes de Plantas/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Traqueófitas/microbiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Microscopia , Micorrizas/citologia , Micorrizas/genética , Nova Zelândia , Filogenia , RNA Fúngico/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
15.
PLoS One ; 10(6): e0128464, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110433

RESUMO

Indices of relative abundance do not control for variation in detectability, which can bias density estimates such that ecological processes are difficult to infer. Distance sampling methods can be used to correct for detectability, but in rainforest, where dense vegetation and diverse assemblages complicate sampling, information is lacking about factors affecting their application. Rare species present an additional challenge, as data may be too sparse to fit detection functions. We present analyses of distance sampling data collected for a diverse tropical rainforest bird assemblage across broad elevational and latitudinal gradients in North Queensland, Australia. Using audio and visual detections, we assessed the influence of various factors on Effective Strip Width (ESW), an intuitively useful parameter, since it can be used to calculate an estimate of density from count data. Body size and species exerted the most important influence on ESW, with larger species detectable over greater distances than smaller species. Secondarily, wet weather and high shrub density decreased ESW for most species. ESW for several species also differed between summer and winter, possibly due to seasonal differences in calling behavior. Distance sampling proved logistically intensive in these environments, but large differences in ESW between species confirmed the need to correct for detection probability to obtain accurate density estimates. Our results suggest an evidence-based approach to controlling for factors influencing detectability, and avenues for further work including modeling detectability as a function of species characteristics such as body size and call characteristics. Such models may be useful in developing a calibration for non-distance sampling data and for estimating detectability of rare species.


Assuntos
Biodiversidade , Aves/fisiologia , Animais , Conservação dos Recursos Naturais , Ecossistema , Modelos Biológicos , Densidade Demográfica , Queensland , Floresta Úmida , Especificidade da Espécie , Tempo (Meteorologia)
16.
Biol Lett ; 10(12): 20140819, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25540160

RESUMO

Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9 °C and reduced maximum temperatures by 3.5 °C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates.


Assuntos
Ecossistema , Temperatura , Clima Tropical
17.
PLoS One ; 9(2): e88635, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586362

RESUMO

With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region.


Assuntos
Distribuição Animal/fisiologia , Biodiversidade , Mudança Climática , Besouros/fisiologia , Ecossistema , Modelos Biológicos , Animais , Espécies em Perigo de Extinção/tendências , Modelos Lineares , Queensland , Especificidade da Espécie , Clima Tropical
18.
Glob Chang Biol ; 20(2): 495-503, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24132984

RESUMO

Extreme weather events, such as unusually hot or dry conditions, can cause death by exceeding physiological limits, and so cause loss of population. Survival will depend on whether or not susceptible organisms can find refuges that buffer extreme conditions. Microhabitats offer different microclimates to those found within the wider ecosystem, but do these microhabitats effectively buffer extreme climate events relative to the physiological requirements of the animals that frequent them? We collected temperature data from four common microhabitats (soil, tree holes, epiphytes, and vegetation) located from the ground to canopy in primary rainforests in the Philippines. Ambient temperatures were monitored from outside of each microhabitat and from the upper forest canopy, which represent our macrohabitat controls. We measured the critical thermal maxima (CTmax ) of frog and lizard species, which are thermally sensitive and inhabit our microhabitats. Microhabitats reduced mean temperature by 1-2 °C and reduced the duration of extreme temperature exposure by 14-31 times. Microhabitat temperatures were below the CTmax of inhabitant frogs and lizards, whereas macrohabitats consistently contained lethal temperatures. Microhabitat temperatures increased by 0.11-0.66 °C for every 1 °C increase in macrohabitat temperature, and this nonuniformity in temperature change influenced our forecasts of vulnerability for animal communities under climate change. Assuming uniform increases of 6 °C, microhabitats decreased the vulnerability of communities by up to 32-fold, whereas under nonuniform increases of 0.66 to 3.96 °C, microhabitats decreased the vulnerability of communities by up to 108-fold. Microhabitats have extraordinary potential to buffer climate and likely reduce mortality during extreme climate events. These results suggest that predicted changes in distribution due to mortality and habitat shifts that are derived from macroclimatic samples and that assume uniform changes in microclimates relative to macroclimates may be overly pessimistic. Nevertheless, even nonuniform temperature increases within buffered microhabitats would still threaten frogs and lizards.


Assuntos
Anuros/fisiologia , Temperatura Alta , Lagartos/fisiologia , Microclima , Animais , Mudança Climática , Ecossistema , Filipinas
19.
Proc Biol Sci ; 280(1770): 20131581, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24026817

RESUMO

Biodiversity is spatially organized by climatic gradients across elevation and latitude. But do other gradients exist that might drive biogeographic patterns? Here, we show that rainforest's vertical strata provide climatic gradients much steeper than those offered by elevation and latitude, and biodiversity of arboreal species is organized along this gradient. In Philippine and Singaporean rainforests, we demonstrate that rainforest frogs tend to shift up in the rainforest strata as altitude increases. Moreover, a Philippine-wide dataset of frog distributions shows that frog assemblages become increasingly arboreal at higher elevations. Thus, increased arboreality with elevation at broad biogeographic scales mirrors patterns we observed at local scales. Our proposed 'arboreality hypothesis' suggests that the ability to exploit arboreal habitats confers the potential for larger geographical distributions because species can shift their location in the rainforest strata to compensate for shifts in temperature associated with elevation and latitude. This novel finding may help explain patterns of species richness and abundance wherever vegetation produces a vertical microclimatic gradient. Our results further suggest that global warming will 'flatten' the biodiversity in rainforests by pushing arboreal species towards the cooler and wetter ground. This 'flattening' could potentially have serious impacts on forest functioning and species survival.


Assuntos
Anuros/fisiologia , Biodiversidade , Meio Ambiente , Animais , Clima , Geografia , Filipinas , Singapura , Clima Tropical
20.
PLoS One ; 8(7): e69393, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936005

RESUMO

Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species' environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species' actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species' responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity.


Assuntos
Altitude , Aves/fisiologia , Mudança Climática , Clima , Animais , Austrália , Aves/classificação , Ecossistema , Geografia , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie , Estatísticas não Paramétricas , Temperatura , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...